Conical Pendulum

Hang off a point: An object of mass m suspended by a string of length l is performing uniform circular motion with angular velocity ω. The inclination of the string and the vertical axis is θ. There is tension T on the string. The plane of circular motion is h under the suspension point A.
$\ddot{x}=r \omega^{2}, \quad$ where $r=l \sin \theta$.
$F_{N}=T \sin \theta=m \ddot{x}=m r \omega^{2}=m l \sin \theta \cdot \omega^{2}, \quad T=m l \omega^{2}$.
To balance the weight: $\quad T \cos \theta=m g, \quad m l \omega^{2} \cos \theta=m g, \quad \cos \theta=\frac{g}{l \omega^{2}}$.
$h=l \cos \theta=\frac{g}{\omega^{2}}, \quad h=\frac{g}{\omega^{2}}$.
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{T \sin \theta}{T \cos \theta}=\frac{m r \omega^{2}}{m g}=\frac{r^{2} \omega^{2}}{r g}=\frac{v^{2}}{r g}, \quad \tan \theta=\frac{v^{2}}{r g}$.
Frequency $F=\frac{\omega}{2 \pi}=\frac{\sqrt{\omega^{2}}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{g}{h}}, \quad f=\frac{1}{2 \pi} \sqrt{\frac{g}{h}}$.
Period $T=\frac{1}{f}, \quad T=2 \pi \sqrt{\frac{h}{g}}$.

Hang off a disc: An object of mass m suspended by a string of length l hanging off the rim of a disc of radius R is performing uniform circular motion with angular velocity ω. The inclination of the string and the vertical axis is θ. There is tension T on the string. The plane of motion is h under the disc.

Radius of the circular motion $r=R+l \sin \theta, \quad \ddot{x}=r \omega^{2}=(R+l \sin \theta) \omega^{2}, \quad h=l \cos \theta$.
$F_{N}=T \sin \theta=m \ddot{x}=m r \omega^{2}=m(R+l \sin \theta) \omega^{2}, \quad T=m\left(\frac{R}{\sin \theta}+l\right) \omega^{2}$.
To balance the weight: $\quad m g=T \cos \theta=m\left(\frac{R}{\sin \theta}+l\right) \omega^{2} \cos \theta, \quad \frac{g}{\omega^{2}}=\frac{R}{\tan \theta}+l \cos \theta=\frac{R}{\tan \theta}+h$ $\tan \theta=\frac{R \omega^{2}}{g-h \omega^{2}}, \quad \omega=\sqrt{\frac{g \tan \theta}{R+l \sin \theta}}, \quad h=\frac{g}{\omega^{2}}-\frac{R}{\tan \theta}$,
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{T \sin \theta}{T \cos \theta}=\frac{m r \omega^{2}}{m g}=\frac{r^{2} \omega^{2}}{r g}=\frac{v^{2}}{r g}, \quad \tan \theta=\frac{v^{2}}{(R+l \sin \theta) g}, \quad v^{2}=\tan \theta(R+l \sin \theta) g$.
Frequency $F=\frac{\omega}{2 \pi}, \quad f=\frac{1}{2 \pi} \sqrt{\frac{g \tan \theta}{R+l \sin \theta}}$.
Period $T=\frac{1}{f}, \quad T=2 \pi \sqrt{\frac{R+l \sin \theta}{g \tan \theta}}$.

Note: When $R=0$, the disc becomes a point, so the above is reduced to the case of "hanging off a point".

